Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Cell Res ; 435(2): 113932, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246397

RESUMO

RNA binding protein RBM10 participates in various RNA metabolism, and its decreased expression or loss of function by mutation has been identified in many human cancers. However, how its dysregulation contributes to human cancer pathogenesis remains to be determined. Here, we found that RBM10 expression was decreased in breast tumors, and breast cancer patients with low RBM10 expression presented poorer survival rates. RBM10 depletion in breast cancer cells significantly promotes the cellular proliferation and migration. We further demonstrated that RBM10 forms a triple complex with YBX1 and phosphatase 1B (PPM1B), in which PPM1B serves as the phosphatase of YBX1. RBM10 knock-down markedly attenuated association between YBX1 and PPM1B, leading to elevated levels of YBX1 phosphorylation and its nuclear translocation. Furthermore, cancer cells with RBM10 depletion had a significantly accelerated tumor growth in nude mice. Importantly, these enhanced tumorigenic phenotypes can be reversed by overexpression of PPM1B. Our findings provide the mechanistic bases for functional loss of RBM10 in promoting tumorigenicity, and are potentially useful in the development of combined therapeutic strategies for cancer patients with defective RBM10.


Assuntos
Neoplasias da Mama , Carcinogênese , Animais , Camundongos , Humanos , Feminino , Camundongos Nus , Carcinogênese/genética , Fosforilação , Proliferação de Células/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Monoéster Fosfórico Hidrolases/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo
2.
Angew Chem Int Ed Engl ; 62(19): e202218211, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36857418

RESUMO

Bicyclo[1.1.1]pentane (BCP) motifs are of growing importance to the pharmaceutical industry as sp3 -rich bioisosteres of benzene rings and as molecular building blocks in materials science. Herein we explore the behavior of 1,3-disubstituted BCP moieties on metal surfaces by combining low-temperature scanning tunneling microscopy / non-contact atomic force microscopy studies with density functional theory modeling. We examine the configuration of individual BCP-containing precursors on Au(111), their supramolecular assembly and thermally activated dehalogenative coupling reactions, affording polymeric chains with incorporated electronically isolating units. Our studies not only provide the first sub-molecular insights of the BCP scaffold behavior on surfaces, but also extend the potential application of BCP derivatives towards integration in custom-designed surface architectures.

3.
Front Vet Sci ; 9: 842105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387149

RESUMO

The aim of the present study was to determine whether the echotextural features of the mammary gland parenchyma in buffaloes during lactation at different somatic cell levels could be used to diagnose mastitis. This study was divided into two parts. In the first experiment, experimental buffaloes (n = 65) with somatic cell counts (SCC) tests (n = 94) in different seasons, including spring (n = 22), summer (n = 24), autumn (n = 37), and winter (n = 11), were used to obtain ultrasonic variables for each quarter of mammary gland that could best explain the corresponding somatic cell level. In the second part of the study, the first part's experimental results were verified by subjecting at least one-quarter udder of eight buffaloes to ultrasonography seven times during mid-July to mid-August for obtaining ultrasonic values at different somatic cell levels. The echo textural characteristics [mean numerical pixel values (NPVs) and pixel heterogeneity (pixel standard deviation, PSD)] were evaluated using 16 ultrasonographic images of each buffalo with Image ProPlus software. The effects of SCC, days in milk (DIM), scanning order (SO), season, as well as the scanning plane and udder quarter (SP + UQ) on both the PSD and NPVs of the mammary gland were significant (p < 0.05). The correlation coefficient between pre-milking sagittal PSD and somatic cell score (SCS) was the highest (r = 0.4224, p < 0.0001) with fitted linear model: y = 0.19445x (dependent variable: SCS, independent variables: pre-milking sagittal PSD; R 2 = 0.84, p < 0.0001). In addition, SCC and ultrasonic of udder quarter were followed for 1 month, confirming that pre-milking sagittal PSD of mammary gland value could explain the SCC variation in milk. The current study demonstrated that the ultrasonographic examination of the udder could be one of the complementary tools for diagnosing subclinical mastitis in buffaloes.

4.
Oncogenesis ; 10(3): 24, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674555

RESUMO

Ubiquitination-dependent DNA damage response (DDR) signals play a critical role in the cellular choice of DNA damage repair pathways. Human DNA helicase RecQL4 participates in DNA replication and repair, and loss of RecQL4 is associated with autosomal recessive genetic disorders characterized by genomic instability features. In an earlier study, RecQL4 was isolated as a stable complex that contained two ubiquitin ligases of the N-end rule (UBR1 and UBR2). However, it is unknown whether or not RecQL4 ubiquitination status is critical for its DNA repair function. Here, we report that RecQL4 directly interacts with RNF8 (a RING finger ubiquitin E3 ligase), and both co-localize at DNA double-strand break (DSB) sites. Our findings indicate that RNF8 ubiquitinates RecQL4 protein mainly at the lysine sites of 876, 1048, and 1101, thereby facilitating the dissociation of RecQL4 from DSB sites. RecQL4 mutant at ubiquitination sites had a significantly prolonged retention at DSBs, which hinders the recruitment of its direct downstream DSB repair proteins (CtIP & Ku80). Interestingly, reduced DSB repair capacity observed in RecQL4 depleted cells was restored only by the reconstitution of wild-type RecQL4, but not the ubiquitination mutant. Additionally, RecQL4 directly interacts with WRAP53ß that is known to recruit RNF8 to DSBs and WRAP53ß enhances the association of RecQL4 with RNF8. WRAP53ß silencing resulted in a nearly diminished recruitment of RNF8 to DSBs and in a greatly attenuated dissociation of RecQL4 from the DSB sites. Collectively, our study demonstrates that the ubiquitination event mediated by RNF8 constitutes an essential component for RecQL4's function in DSB repair.

5.
Autophagy ; 16(4): 724-734, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31432739

RESUMO

PRKN/parkin activation through phosphorylation of its ubiquitin and ubiquitin-like domain by PINK1 is critical in mitophagy induction for eliminating the damaged mitochondria. Deubiquitinating enzymes (DUBs) functionally reversing PRKN ubiquitination are critical in controlling the magnitude of PRKN-mediated mitophagy process. However, potential DUBs that directly target PRKN and antagonize its pro-mitophagy effect remains to be identified and characterized. Here, we demonstrated that USP33/VDU1 is localized at the outer membrane of mitochondria and serves as a PRKN DUB through their interaction. Cellular and in vitro assays illustrated that USP33 deubiquitinates PRKN in a DUB activity-dependent manner. USP33 prefers to remove K6, K11, K48 and K63-linked ubiquitin conjugates from PRKN, and deubiquitinates PRKN mainly at Lys435. Mutation of this site leads to a significantly decreased level of K63-, but not K48-linked PRKN ubiquitination. USP33 deficiency enhanced both K48- and K63-linked PRKN ubiquitination, but only K63-linked PRKN ubiquitination was significantly increased under mitochondrial depolarization. Further, USP33 knockdown increased both PRKN protein stabilization and its translocation to depolarized mitochondria leading to the enhancement of mitophagy. Moreover, USP33 silencing protects SH-SY5Y human neuroblastoma cells from the neurotoxin MPTP-induced apoptotic cell death. Our findings convincingly demonstrate that USP33 is a novel PRKN deubiquitinase antagonizing its regulatory roles in mitophagy and SH-SY5Y neuron-like cell survival. Thus, USP33 inhibition may represents an attractive new therapeutic strategy for PD patients.Abbreviations: CCCP: carbonyl cyanide 3-chlorophenylhydrazone; DUB: deubiquitinating enzymes; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; OMM: outer mitochondrial membrane; PD: Parkinson disease; PINK1: PTEN induced kinase 1; PRKN/PARK2: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; TM: transmembrane; Ub: ubiquitin; UBA1: ubiquitin like modifier activating enzyme 1; UBE2L3/UbcH7: ubiquitin conjugating enzyme E2 L3; USP33: ubiquitin specific peptidase 33; WT: wild type.


Assuntos
Autofagia/fisiologia , Mitofagia/fisiologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitinação/fisiologia
6.
Oncogenesis ; 7(9): 68, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30206236

RESUMO

Human RecQL4 helicase plays critical roles in the maintenance of genomic stability. Mutations in RecQL4 helicase results in three clinically related autosomal recessive disorders: Rothmund-Thomson syndrome (RTS), RAPADILINO, and Baller-Gerold syndrome. In addition to several premature aging features, RTS patients are characterized by aneuploidy involving either loss or gain of a single chromosome. Chromosome mosaicism and isochromosomes involving chromosomes 2, 7, and 8 have been reported in RecQL4-deficient RTS patients, but the precise role of RecQL4 in chromosome segregation/stability remains to be elucidated. Here, we demonstrate that RecQL4 physically and functionally interacts with Aurora B kinase (AURKB) and stabilizes its expression by inhibiting its ubiquitination process. Our study indicates that the N-terminus of RecQL4 interacts with the catalytic domain of AURKB. Strikingly, RecQL4 suppression reduces the expression of AURKB leading to mitotic irregularities and apoptotic cell death. RecQL4 suppression increases the proportion of cells at the G2/M phase followed by an extensive cell death, presumably owing to the accumulation of mitotic irregularities. Both these defects (accumulation of cells at G2/M phase and an improper mitotic exit to sub-G1) are complemented by the ectopic expression of AURKB. Finally, evidence is provided for the requirement of both human telomerase reverse transcriptase and RecQL4 for stable immortalization and longevity of RTS fibroblasts. Collectively, our study suggests that the RecQL4-AURKB axis is essential for cellular proliferation, cell cycle progression, and mitotic stability in human cells.

7.
Cancer Res ; 76(10): 3057-66, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27013200

RESUMO

Elevation of the DNA-unwinding helicase RECQL4, which participates in various DNA repair pathways, has been suggested to contribute to the pathogenicity of various human cancers, including gastric cancer. In this study, we addressed the prognostic and chemotherapeutic significance of RECQL4 in human gastric cancer, which has yet to be determined. We observed significant increases in RECQL4 mRNA or protein in >70% of three independent sets of human gastric cancer specimens examined, relative to normal gastric tissues. Strikingly, high RECQL4 expression in primary tumors correlated well with poor survival and gastric cancer lines with high RECQL4 expression displayed increased resistance to cisplatin treatment. Mechanistic investigations revealed a novel role for RECQL4 in transcriptional regulation of the multidrug resistance gene MDR1, through a physical interaction with the transcription factor YB1. Notably, ectopic expression of RECQL4 in cisplatin-sensitive gastric cancer cells with low endogenous RECQL4 was sufficient to render them resistant to cisplatin, in a manner associated with YB1 elevation and MDR1 activation. Conversely, RECQL4 silencing in cisplatin-resistant gastric cancer cells with high endogenous RECQL4 suppressed YB1 phosphorylation, reduced MDR1 expression, and resensitized cells to cisplatin. In establishing RECQL4 as a critical mediator of cisplatin resistance in gastric cancer cells, our findings provide a therapeutic rationale to target RECQL4 or the downstream AKT-YB1-MDR1 axis to improve gastric cancer treatment. Cancer Res; 76(10); 3057-66. ©2016 AACR.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RecQ Helicases/metabolismo , Neoplasias Gástricas/patologia , Proteína 1 de Ligação a Y-Box/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas Imunoenzimáticas , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Células Tumorais Cultivadas
8.
Nucleic Acids Res ; 43(11): 5476-88, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25969448

RESUMO

Xeroderma pigmentosum group D (XPD/ERCC2) encodes an ATP-dependent helicase that plays essential roles in both transcription and nucleotide excision repair of nuclear DNA, however, whether or not XPD exerts similar functions in mitochondria remains elusive. In this study, we provide the first evidence that XPD is localized in the inner membrane of mitochondria, and cells under oxidative stress showed an enhanced recruitment of XPD into mitochondrial compartment. Furthermore, mitochondrial reactive oxygen species production and levels of oxidative stress-induced mitochondrial DNA (mtDNA) common deletion were significantly elevated, whereas capacity for oxidative damage repair of mtDNA was markedly reduced in both XPD-suppressed human osteosarcoma (U2OS) cells and XPD-deficient human fibroblasts. Immunoprecipitation-mass spectrometry analysis was used to identify interacting factor(s) with XPD and TUFM, a mitochondrial Tu translation elongation factor was detected to be physically interacted with XPD. Similar to the findings in XPD-deficient cells, mitochondrial common deletion and oxidative damage repair capacity in U2OS cells were found to be significantly altered after TUFM knock-down. Our findings clearly demonstrate that XPD plays crucial role(s) in protecting mitochondrial genome stability by facilitating an efficient repair of oxidative DNA damage in mitochondria.


Assuntos
Dano ao DNA , Genoma Mitocondrial , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Linhagem Celular Tumoral , Reparo do DNA , Inativação Gênica , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/análise , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/fisiologia , Fator Tu de Elongação de Peptídeos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Deleção de Sequência , Proteína Grupo D do Xeroderma Pigmentoso/análise , Proteína Grupo D do Xeroderma Pigmentoso/antagonistas & inibidores , Proteína Grupo D do Xeroderma Pigmentoso/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA